direct product, abelian, monomial, 2-elementary
Aliases: C22×C22, SmallGroup(88,12)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22×C22 |
C1 — C22×C22 |
C1 — C22×C22 |
Generators and relations for C22×C22
G = < a,b,c | a2=b2=c22=1, ab=ba, ac=ca, bc=cb >
(1 62)(2 63)(3 64)(4 65)(5 66)(6 45)(7 46)(8 47)(9 48)(10 49)(11 50)(12 51)(13 52)(14 53)(15 54)(16 55)(17 56)(18 57)(19 58)(20 59)(21 60)(22 61)(23 70)(24 71)(25 72)(26 73)(27 74)(28 75)(29 76)(30 77)(31 78)(32 79)(33 80)(34 81)(35 82)(36 83)(37 84)(38 85)(39 86)(40 87)(41 88)(42 67)(43 68)(44 69)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 43)(9 44)(10 23)(11 24)(12 25)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(22 35)(45 88)(46 67)(47 68)(48 69)(49 70)(50 71)(51 72)(52 73)(53 74)(54 75)(55 76)(56 77)(57 78)(58 79)(59 80)(60 81)(61 82)(62 83)(63 84)(64 85)(65 86)(66 87)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
G:=sub<Sym(88)| (1,62)(2,63)(3,64)(4,65)(5,66)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,60)(22,61)(23,70)(24,71)(25,72)(26,73)(27,74)(28,75)(29,76)(30,77)(31,78)(32,79)(33,80)(34,81)(35,82)(36,83)(37,84)(38,85)(39,86)(40,87)(41,88)(42,67)(43,68)(44,69), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(45,88)(46,67)(47,68)(48,69)(49,70)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76)(56,77)(57,78)(58,79)(59,80)(60,81)(61,82)(62,83)(63,84)(64,85)(65,86)(66,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)>;
G:=Group( (1,62)(2,63)(3,64)(4,65)(5,66)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,60)(22,61)(23,70)(24,71)(25,72)(26,73)(27,74)(28,75)(29,76)(30,77)(31,78)(32,79)(33,80)(34,81)(35,82)(36,83)(37,84)(38,85)(39,86)(40,87)(41,88)(42,67)(43,68)(44,69), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(45,88)(46,67)(47,68)(48,69)(49,70)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76)(56,77)(57,78)(58,79)(59,80)(60,81)(61,82)(62,83)(63,84)(64,85)(65,86)(66,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88) );
G=PermutationGroup([[(1,62),(2,63),(3,64),(4,65),(5,66),(6,45),(7,46),(8,47),(9,48),(10,49),(11,50),(12,51),(13,52),(14,53),(15,54),(16,55),(17,56),(18,57),(19,58),(20,59),(21,60),(22,61),(23,70),(24,71),(25,72),(26,73),(27,74),(28,75),(29,76),(30,77),(31,78),(32,79),(33,80),(34,81),(35,82),(36,83),(37,84),(38,85),(39,86),(40,87),(41,88),(42,67),(43,68),(44,69)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,43),(9,44),(10,23),(11,24),(12,25),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(22,35),(45,88),(46,67),(47,68),(48,69),(49,70),(50,71),(51,72),(52,73),(53,74),(54,75),(55,76),(56,77),(57,78),(58,79),(59,80),(60,81),(61,82),(62,83),(63,84),(64,85),(65,86),(66,87)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)]])
C22×C22 is a maximal subgroup of
C23.D11
88 conjugacy classes
class | 1 | 2A | ··· | 2G | 11A | ··· | 11J | 22A | ··· | 22BR |
order | 1 | 2 | ··· | 2 | 11 | ··· | 11 | 22 | ··· | 22 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
88 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C11 | C22 |
kernel | C22×C22 | C2×C22 | C23 | C22 |
# reps | 1 | 7 | 10 | 70 |
Matrix representation of C22×C22 ►in GL3(𝔽23) generated by
22 | 0 | 0 |
0 | 22 | 0 |
0 | 0 | 22 |
1 | 0 | 0 |
0 | 22 | 0 |
0 | 0 | 1 |
20 | 0 | 0 |
0 | 21 | 0 |
0 | 0 | 18 |
G:=sub<GL(3,GF(23))| [22,0,0,0,22,0,0,0,22],[1,0,0,0,22,0,0,0,1],[20,0,0,0,21,0,0,0,18] >;
C22×C22 in GAP, Magma, Sage, TeX
C_2^2\times C_{22}
% in TeX
G:=Group("C2^2xC22");
// GroupNames label
G:=SmallGroup(88,12);
// by ID
G=gap.SmallGroup(88,12);
# by ID
G:=PCGroup([4,-2,-2,-2,-11]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^22=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations
Export